# COMP 551 Comparison of Different Text Classification Models

Negar Hassantabar - 260939318

Fall 2019

#### **1 RESULTS**

In this project, variety type of text classification models has implemented and evaluated. The following table represents the best result for each model, as it is shown in table 1, the best results obtained from Logistic Regression model with implementing the *TfidfTransformer()* for preprocessing input vector.

| Model                  | Best Validation<br>Accuracy obtained | Rank |
|------------------------|--------------------------------------|------|
| Logistic<br>Regression | 54.27                                | 1    |
| LSTM                   | 51.09                                | 2    |
| Simple RNN             | 21.45                                | 6    |
| GRU                    | 49.91                                | 3    |
| CuDNNGRU               | 48.07                                | 5    |
| CuDNNLSTM              | 48.56                                | 4    |

Table 1 – Best model's performance

According to the table one, The LSTM model and GRU model has provided almost the same validation accuracy and Simple RNN model provided poor performance for this text classification task.

#### **1-1 LOGESTIC REGRESION**

As a linear model the Logistic Regression model has been implemented and the impact of  $N_garm$ , Stop\_words, Tf-idf. has been evaluated. The results of the implemented models is provided in table 2;

the best result has been obtained from model with *TfidfTransformer()*, customized *Stop\_Words* for *CountVectorizer()* and 1  $N_gram$ . The details are provided in table 2.

| Model | Parameters       | Accuracy | Rank |  |
|-------|------------------|----------|------|--|
|       | Tfidf = False    |          |      |  |
| LR1   | Stop word =      | 50.19    | 4    |  |
| LKI   | Customized       | 50.19    | 4    |  |
|       | $N_gram = (1,1)$ |          |      |  |
|       | Tfidf = False    |          |      |  |
| LR2   | Stop word =      | 50.38    | 3    |  |
| LKZ   | English          | 50.58    |      |  |
|       | $N_gram = (1,1)$ |          |      |  |
|       | Tfidf = True     |          |      |  |
| LR3   | Stop word =      | 54.26    | 2    |  |
| LKJ   | English          | 54.20    |      |  |
|       | $N_gram = (1,1)$ |          |      |  |
|       | Tfidf = true     |          |      |  |
| LR4   | Stop word =      | 54.27    | 1    |  |
| LK4   | Customized       | 54.27    |      |  |
|       | $N_gram = (1,1)$ |          |      |  |

Table 2 – Logistic Regression Models Results

According to table 2, the *TfidfTransformer()* has a huge impact on the validation accuracy of Logistic Regression model and improves it by 6 percent. However, the customized *Stop\_words*, which contained most frequent words in comments, did not influence the validation accuracy as much as other hyper parameters.

#### 1-1-1 N\_gram

N\_gram is one of the model that influences the number of features

remarkably, however, its impact on validation accuracy depends on the nature of the data. Hence, for the Reddit comments dataset the range of (1, 1) to (1, 4) N\_garm is implemented and the following result is obtained and provided in table 3.

| Model                                   | N_gram | Accuracy |
|-----------------------------------------|--------|----------|
| Tfidf = True,<br>Stop_Word = Customized | (1, 1) | 54.27    |
|                                         | (1, 2) | 54.26    |
|                                         | (1, 3) | 53.63    |
|                                         | (1, 4) | 53.36    |

| Table | 3 – | $N_{-}$ | gram | Influence |
|-------|-----|---------|------|-----------|
|-------|-----|---------|------|-----------|

According to table 3, increasing N\_gram doesn't lead to a better validation accuracy.

#### 1-2 LSTM

In the LSTM implementation, three different main models has been evaluated and the range of validation accuracy derived from LSTM models is below the accuracy of Logistic Regression. The details of each implemented models is provided as the Appendix 1. In a LSTM layer the input data format is different from Logistic Regression or any other previously implemented models. The Reddit comment's words needed to be transferred to non-sparse numerical vectors thus, instead of counting the repetition of a word or appearance a word, each number represents a unique word. To do this task, first of all, a text preprocessing included eliminating the symbols, stop words, and space between words has been done. Also, PorterStemmer() and WordNetLemmatizer() were added for stemming and lemmatisation. Then, the nltk.tokenize.word\_tokenize() used to provide vectors with separated word as their object and keras.preprocessing.text.one\_hot() used to transfer each unique word to a number. For

equalizing the input shape of all vector length comments, *keras.preprocessing. sequence.pad\_sequences()* was used and the length has chosen according to distribution of length of comments and obtained results. According to the following table, vector length was changed from small number of words to the higher numbers and vector length equal to 40 has been provided best result among all implemented models. Higher vector lengths were unable to predict the desired class and predicting the same class for most of the comments.

| Model                               | Vector<br>Lenght | Accuracy | Rank |  |
|-------------------------------------|------------------|----------|------|--|
| 3                                   | 8                | 0.0500   | 5    |  |
| 4                                   | 10               | 0.3000   | 4    |  |
| 6                                   | 20               | 0.3870   | 3    |  |
| 7                                   | 35               | 0.4000   | 2    |  |
| 17                                  | 40               | 0.4653   | 1    |  |
| 29                                  | 66               | 0.0500   | 5    |  |
| 30                                  | 100              | 0.0500   | 5    |  |
| Table 4 – Vector length Vs Accuracy |                  |          |      |  |

Table 4 – Vector length Vs Accuracy

#### 1-2-1 BEST RESULT

According to detailed tables in Appendix 1, the best result for LSTM model structure it's obtained from One-LSTM-Layer-Structure model that is shown in table 5.

|                         | 01      |
|-------------------------|---------|
| Model Number            | 31      |
| Vector Length           | 40      |
| Hidden Size             | 512     |
| Epoch                   | 7       |
| Number of LSTM layers   | 1       |
| Activation Function     | Relu    |
| Drop out                | 0.4     |
| Classification Function | Softmax |
| Learning Rate           | 0.00085 |
| Batch size              | 200     |
| Fit Shuffle             | False   |
| Validation Accuracy (%) | 51.09   |
| Training Accuracy (%)   | 72.00   |

Table 5 – Model 31 parameters

Also for this model 90 percent of data was allocated for training set and 10 percent for validation set. This model provides the best validation accuracy and also the least overfitting among all LSTM models that have been implemented.

# 1-2-2 Lemmatisation, Stemming and stop Words

The input format and parameters has the same importance for deep learning models, thus, after finding the best model parameters, input data parameters have been evaluated. For this task, the data set has been split; Shuffle was set as *False* to evaluating models on the same validation and training dataset. As mentioned in table 5, the best model implemented with stemming and lemmatisation, and eliminating stop words.

| Models                              | Accuracy (%) | Epoch |
|-------------------------------------|--------------|-------|
| With Stemming,<br>lemmatisation and | 49.34        | 6     |
| Stop Words                          | 49.93        | 6     |
| Without<br>Preprocessing            | 50.99        | 4     |
|                                     | 50.36        | 6     |
| With Stemming and<br>Lemmatisation  | 51.09        | 7     |

Table 6 – preprocessing parameters

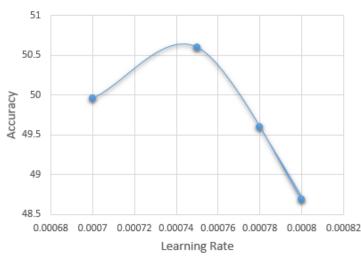
According to table 6, the stop words has negative effect on validation accuracy. One of the possible reasons could be reducing the number of unique words from 68,205 words to 61,769 words and disrupting the relation among words in a sentence with eliminating some words. However, Stemming and Lemmatisation has improved the validation accuracy and reduced the number of unique words to 61,784 words but do not disrupt the sequence of the comments.

#### 1-2-3 Learning Rate

In this part, the influence of Learning Rate has been evaluated in order to get best result on models. Hence, different Learning Rate have been implemented on each LSTM model. A sample result is shown in table 7 and the complete result is given in Appendix 1.

| Learning Rate | Accuracy | Epoch | Rank |
|---------------|----------|-------|------|
| 0.00070       | 49.6     | 6     | 3    |
| 0.00075       | 50.6     | 6     | 1    |
| 0.00078       | 50.3     | 5     | 2    |
| 0.00080       | 48.69    | 8     | 4    |

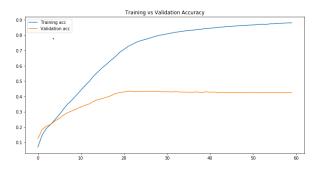
Table 7 – Learning Rate influence on Accuracy

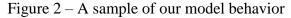


#### Learning Rate Vs Accuracy

#### Figure 1 – Learning Rate Vs Accuracy

According to table 6 and figure 1, there is no linear relation between Learning Rate and Accuracy and also according to Appendix 1 for each model there is a different relation between these parameters. All the implemented models were showing a considerable overfitting and although we obtained a high accuracy on the training dataset, we were unable to obtain a good prediction on the validation dataset. (51.09%). Figure 2 is provided as a sample showing how our models behaved. The high resolution of figure 2 is provided as Appendix 3.





#### 1-3Simple RNN

According to table 8, the simple RNN model has poor performance in comparison with other implemented Recurrent Neural Network (RNN) algorithms. As you see in figure 3, the Simple RNN provides a slow learning rate on the training set, and also the curve of training and validation accuracy has a huge rate of noise. The high resolution of figure 3 provided as Appendix 3



Figure 3 – Simple RNN Accuracy Curve

The best result for SimpleRNN model obtained from model 5 with parameters which is provided in table 8.

| Model Number                   | 5       |
|--------------------------------|---------|
| Vector Length                  | 40      |
| Hidden Size                    | 512     |
| Epoch                          | 100     |
| Number of LSTM layers          | 1       |
| Activation Function            | Relu    |
| Drop out                       | 0.4     |
| <b>Classification Function</b> | Softmax |
| Learning Rate                  | 0.00080 |
| Batch size                     | 200     |
| Fit Shuffle                    | False   |
| Validation Accuracy (%)        | 21.45   |
| Training Accuracy (%)          | 53.29   |
| $T_{1} = 1 + 1 + 0 = 0$        |         |

Table 8 – SimpleRNN parameters

According to table 8, the SimpleRNN model provides the least accuracy and also the largest overfitting gap.

#### 1-4 GRU

GRU is older version of LSTM Network, so, GRU models has been implemented and evaluated based on the model's parameters which has best performance on LSTM model. Then, hyper parameters has been evaluated and best performance was obtained from the model with parameters that is provided in table 9.

| Model Number        | 3       |
|---------------------|---------|
| Vector Length       | 40      |
| Hidden size         | 512     |
| Epoch               | 5       |
| Activation Function | Relu    |
| Dropout             | 0.6     |
| Classification      | Softmax |
| Learning Rate       | 0.001   |
| Batch Size          | 200     |
| Fit Shuffle         | False   |
| Validation Accuracy | 49.91   |
| Training Accuracy   | 65.45   |

Table 9 – Model 3 Parameters

The results for all implemented models is provided in Appendix 2. The main parameters that has been evaluated in this project for GRU models are Learning Rate and Drop out.

| Model | Dropout | Learning<br>Rate | Accuracy | Rank |
|-------|---------|------------------|----------|------|
| 1     | 0.2     | 0.0010           | 49.30    | 5    |
| 2     | 0.4     | 0.0010           | 49.74    | 3    |
| 3     | 0.6     | 0.0010           | 49.91    | 1    |
| 4     | 0.6     | 0.0009           | 49.87    | 2    |
| 5     | 0.6     | 0.0008           | 49.69    | 4    |
| 6     | 0.4     | 0.0008           | 48.94    | 6    |

Table 10 – GRU Models Result

#### 1-5 CuDNNGRU

Another implemented neural network algorithm is CuDNNRU which is not an RNNcell and known as a faster version of GRU. The performance of the CuDNNGRU models seems to be almost in the same range as GRU. The model was implemented with different range of Learning Rate and other hyper parameters were set based on the best GRU model. The best obtained results is provided in table 11. According to the results, higher Learning Rate leads to the better performance.

| Model | Learning Rate | Accuracy | Rank |
|-------|---------------|----------|------|
| 1     | 0.0007        | 47.94    | 2    |
| 2     | 0.0006        | 47.79    | 3    |
| 3     | 0.0010        | 48.07    | 1    |

Table 11 - CuDNNGRU Results

According to table 11, the best result of the model is almost 2 percent lower than normal GRU model.

#### 1-6 CuDNNLSTM

CuDNNLSTM is also known as the faster version of LSTM same as CuDNNGRU. The CuDNNLSTM model was implemented based on the hyper parameters of the best LSTM model obtained and Learning Rate was used as a Changeable parameter to obtain the best result. The results of all implementations is provided in table 12.

| Model                        | Learning Rate | Accuracy | Rank |  |  |  |  |  |  |
|------------------------------|---------------|----------|------|--|--|--|--|--|--|
| 1                            | 0.0085        | 48.31    | 2    |  |  |  |  |  |  |
| 2                            | 0.0080        | 48.06    | 3    |  |  |  |  |  |  |
| 3                            | 0.0010        | 48.56    | 1    |  |  |  |  |  |  |
| Table 12 CUDNINI STM Deculta |               |          |      |  |  |  |  |  |  |

Table 12 – CuDNNLSTM Results

According to tables 11 and 12, the faster versions of both models (CuDNNLSTM and CuDNNGRU) perform in the same way of their base models and with CuDNNLSTM we obtained better performance in comparison with CuDNNGRU. The both models are shown 4 percents decrease in validation accuracy; however, the hyper parameters are set almost as same as their base models as it is shown in table 13.

| Model | Learning Rate | CuDNN | Base  |
|-------|---------------|-------|-------|
| LSTM  | 0.00085       | 48.56 | 51.09 |
| GRU   | 0.00100       | 48.07 | 49.91 |

Table 13 – CuDNN Vs Base models Accuracy

## Appendix 1

# The detailed parameters table of all 1 LSTM layer models

| Model Number | Vector Length | Hidden Size | Epoch | Number of Layer | Activation Function layer 1 | Drop out layer 1 | Classification Function | Learning Rate | Batch Size | Fit Shuffle | Validation Accuracy | Training Accuracy | Comment                                                                |
|--------------|---------------|-------------|-------|-----------------|-----------------------------|------------------|-------------------------|---------------|------------|-------------|---------------------|-------------------|------------------------------------------------------------------------|
| 22           | 40            | 512         | 30    | 1               | Relu                        | 0.4              | Softmax                 | 0.001         | 200        | FALSE       | 0.4894              | 0.6572            |                                                                        |
| 23           | 40            | 512         | 6     | 1               | Relu                        | 0.4              | Softmax                 | 0.001         | 200        | FALSE       | 0.4966              | 0.7200            | Recurrent Dropout 0.4                                                  |
| 24           | 40            | 512         | 15    | 1               | Relu                        | 0.4              | Softmax                 | 0.001         | 200        | FALSE       | 0.4469              | 0.9521            | Embedding (mask_zero =<br>True)                                        |
| 25           | 40            | 512         | 15    | 1               | Relu                        | 0.25             | Softmax                 | 0.001         | 200        | FALSE       | 0.4842              | 0.7000            | add 2 Dropout Layer<br>with 0.25                                       |
| 26           | 40            | 512         | 15    | 1               | Relu                        | 0.4              | Softmax                 | 0.001         | 200        | FALSE       | 0.4879              | 0.6600            | add 2 Dropout Layer<br>with 0.26                                       |
| 27           | 40            | 512         | 15    | 1               | Relu                        | 0.4              | Softmax                 | 0.001         | 200        | FALSE       | 0.4933              | 0.6952            | add 2 Dropout Layer<br>with 0.3                                        |
| 27           | 40            | 512         | 15    | 1               | Relu                        | 0.4              | Softmax                 | 0.0001        | 200        | FALSE       | 0.4933              | 0.6700            | add 2 Dropout Layer<br>with 0.4                                        |
| 28           | 40            | 512         | 5     | 1               | Relu                        | 0.4              | Softmax                 | 0.001         | 200        | FALSE       | 0.5080              | 0.6800            | Allocated more Data for<br>training (0.9 Traing , 0.1<br>Validation)   |
| 30           | 40            | 512         | 7     | 1               | Relu                        | 0.4              | Softmax                 | 0.001         | 200        | FALSE       | 0.5060              | 0.7584            | Allocated more Data for<br>training (0.95 Traing ,<br>0.05 Validation) |
| 31*          | 40            | 512         | 7     | 1               | Relu                        | 0.4              | Softmax                 | 0.00085       | 200        | FALSE       | 0.5109              | 0.7200            | Allocated more Data for<br>training (0.9 Traing , 0.1<br>Validation)   |
| 31           | 40            | 512         | 7     | 1               | Relu                        | 0.4              | Softmax<br>in vellow    | 0.00080       | 200        | FALSE       | 0.4966              | 0.6470            | Allocated more Data for<br>training (0.9 Traing , 0.1<br>Validation)   |

\*The best model is highlighted in yellow

| Model Number | Vector Length | Hidden Size | Epoch | Number of Layer | Activation Function layer 1 | Drop out layer 1 | Activation Function layer 2 | Drop out layer 2 | Classification Function | Learning Rate | Batch Size | Fit Shuffle | Validation Accuracy | Training Accuracy | Comment                                  |
|--------------|---------------|-------------|-------|-----------------|-----------------------------|------------------|-----------------------------|------------------|-------------------------|---------------|------------|-------------|---------------------|-------------------|------------------------------------------|
| 1            | 40            | 64          | 20    | 2               | Relu                        | 0.2              | Relu                        | 0.4              | Sigmoid                 | 0.01          | 100        | TRUE        | 0.0500              | 0.0600            |                                          |
| 3            | 8             | 128         | 10    | 2               | Relu                        | 0.15             | Relu                        | 0.15             | Sigmoid                 | 0.001         | 200        | FALSE       | 0.0500              | 0.0500            | Add (0.0001)<br>to X_train and<br>X_test |
| 4            | 10            | 256         | 20    | 2               | Relu                        | 0.15             | Relu                        | 0.15             | Sigmoid                 | 0.001         | 200        | FALSE       | 0.3000              | 0.8130            | Add (1) to<br>y_train and<br>y_test      |
| 5            | 10            | 64          | 20    | 2               | Relu                        | 0.3              | Relu                        | 0.3              | Sigmoid                 | 0.001         | 200        | FALSE       | 0.3060              | 0.8180            |                                          |
| 6            | 20            | 64          | 20    | 2               | Relu                        | 0.3              | Relu                        | 0.3              | Sigmoid                 | 0.001         | 200        | FALSE       | 0.3870              | 0.7850            |                                          |
| 7            | 35            | 64          | 30    | 2               | Relu                        | 0.3              | Relu                        | 0.3              | Sigmoid                 | 0.001         | 200        | FALSE       | 0.4000              | 0.6990            |                                          |
| 8            | 40            | 64          | 30    | 2               | Relu                        | 0.3              | Relu                        | 0.3              | Sigmoid                 | 0.001         | 200        | FALSE       | 0.3800              | 0.5620            |                                          |
| 9            | 40            | 64          | 100   | 2               | Relu                        | 1.3              | Relu                        | 1.3              | Sigmoid                 | 0.0015        | 200        | FALSE       | 0.4390              | 0.7900            | Dropped to<br>0.422                      |
| 10           | 40            | 64          | 30    | 2               | Relu                        | 1.3              | Relu                        | 1.3              | Sigmoid                 | 0.0015        | 200        | FALSE       | 0.4334              | 0.8360            |                                          |
| 15           | 40            | 128         | 35    | 2               | Relu                        | 0.3              | Relu                        | 0.4              | Softmax                 | 0.0015        | 200        | FALSE       | 0.4559              | 0.8000            |                                          |
| 16           | 40            | 200         | 35    | 2               | Relu                        | 0.3              | Relu                        | 0.4              | Softmax                 | 0.0015        | 200        | FALSE       | 0.4400              | 0.9000            |                                          |
| 17           | 40            | 512         | 30    | 2               | Relu                        | 0.3              | Relu                        | 0.4              | Softmax                 | 0.0015        | 200        | FALSE       | 0.4653              | 0.7100            |                                          |
| 19           | 40            | 512         | 30    | 2               | Relu                        | 0.4              | Relu                        | 0.4              | Softmax                 | 0.0015        | 200        | FALSE       | 0.4600              | 0.9400            |                                          |
| 20           | 50            | 512         | 30    | 2               | Relu                        | 0.4              | Relu                        | 0.4              | Softmax                 | 0.0015        | 200        | FALSE       | 0.4580              | 0.9200            |                                          |
| 21           | 40            | 512         | 30    | 2               | Relu                        | 0.4              | Relu                        | 0.4              | Softmax                 | 0.0001        | 201        | FALSE       | 0.4255              | 0.7450            |                                          |

# The detailed parameters table of all 2 LSTM layer models

### The detailed parameters table of all 3 LSTM layer models

| Model Number | Vector Length | Hidden Size | Epoch | Number of Layer | Activation Function Layer 1 | Drop out Layer 1 | Activation Function Layer 2 | Drop out Layer 2 | Activation Function Layer 3 | Drop out Layer 3 | Classification Function | Learning Rate | Batch Size | Fit Shuffle | Validation Accuracy | Training Accuracy | Comment        |
|--------------|---------------|-------------|-------|-----------------|-----------------------------|------------------|-----------------------------|------------------|-----------------------------|------------------|-------------------------|---------------|------------|-------------|---------------------|-------------------|----------------|
| 2            | 8             | 128         | 50    | 3               | Relu                        | 0.2              | Tanh                        | 0.2              | Relu                        | 0.2              | Sigmoid                 | 0.001         | 200        | TRUE        | 0.0600              | 0.0500            |                |
| 11           | 40            | 32          | 30    | 3               | Relu                        | 0.3              | Relu                        | 0.3              | Relu                        | 0.3              | Sigmoid                 | 0.0015        | 200        | FALSE       | 0.2500              | 0.6200            |                |
| 12           | 30            | 32          | 30    | 3               | Relu                        | 0.15             | Tanh                        | 0.15             | Relu                        | 0.15             | Sigmoid                 | 0.0015        | 200        | FALSE       | 0.3860              | 0.7390            |                |
| 13           | 30            | 32          | 30    | 3               | Relu                        | 0.15             | Tanh                        | 0.15             | Relu                        | 0.2              | Sigmoid                 | 0.0001        | 200        | FALSE       | 0.2250              | 0.3180            | Both<br>Rising |
| 14           | 40            | 64          | 50    | 3               | Relu                        | 0.3              | Tanh                        | 0.3              | Relu                        | 0.4              | Softmax                 | 0.0015        | 200        | FALSE       | 0.4230              | 0.8580            |                |

### Appendix 2

### The detailed parameters table of all GRU models

| Model Number | Vector Length | Hidden Size | Epoch | Number of Layer | Activation Function Layer | Drop out Layer | Classification Function | Learning Rate | Batch Size | Fit Shuffle | Validation Accuracy | Training Accuracy | Comment |
|--------------|---------------|-------------|-------|-----------------|---------------------------|----------------|-------------------------|---------------|------------|-------------|---------------------|-------------------|---------|
| 1            | 40            | 512         | 6     | 1               | Relu                      | 0.2            | Softmax                 | 0.0010        | 200        | TRUE        | 0.4930              | 0.7300            |         |
| 2            | 40            | 512         | 6     | 1               | Relu                      | 0.4            | Softmax                 | 0.0010        | 200        | FALSE       | 0.4974              | 0.6340            |         |
| 3*           | 40            | 512         | 5     | 1               | Relu                      | 0.60           | Softmax                 | 0.0010        | 200        | FALSE       | 0.4991              | 0.6545            |         |
| 4            | 40            | 512         | 4     | 1               | Relu                      | 0.60           | Softmax                 | 0.0009        | 200        | FALSE       | 0.4987              | 0.5704            |         |
| 5            | 40            | 512         | 8     | 1               | Relu                      | 0.60           | Softmax                 | 0.0008        | 200        | FALSE       | 0.4969              | 0.7448            |         |
| 6            | 40            | 512         | 6     | 1               | Relu                      | 0.4            | Softmax                 | 0.0008        | 200        | FALSE       | 0.4894              | 0.7000            |         |

\*The best model is highlighted in yellow

Appendix 3

### A sample of our models behavior

